Journal of Organometallic Chemistry, 144 (1978) C34–C38 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

REACTIONS OF CARBON DIOXIDE WITH METAL CARBONYL ANIONS G.O. EVANS*, W.F. WALTER, D.R. MILLS AND C.A. STREIT

Department of Chemistry, State University College, Fredonia, New York 14063 (U.S.A.)

(Received August 4th, 1977)

SUMMARY

The reactivity of a series of metal carbonyl anions with CO_2 has been found to parallel their relative nucleophilicities. The highly nucleophilic species, $C_5H_5Fe(CO)_2$, reacts readily to give the dimer, $(C_5H_5Fe(CO)_2)_2$, and carbonate while $Co(CO)_4$ is unreactive. The reaction of $^{13}CO_2$ with $C_5H_5Fe(CO)_2$ results in the formation of the ^{13}CO enriched dimer.

The current interest in the activation of CO_2 via its coordination to transition metal complexes^{1,2,3} and its subsequent conversion (i.e. reduction) into organic materials prompts us to report some of our recent and related studies.

The very modest success of ourselves**and others^{4,5} in converting CO_2 into formate esters in the presence of transition metal catalysts may be attributed in part to the low Lewis basicity of CO_2 and, hence, its general inertness toward coordination to metal complexes. These results have led us to investigate the interaction

C34

^{**}For example, our yield of ethyl formate from a system at 500 psi
(1:1 CO₂:H₂) and 155°C containing a catalytic amount of C₂H₅I
in ethanol corresponded to a two molar turnover of CO₂(CO)₆(PPh₃)₂.

of CO_2 with more "electron rich" species such as the metal carbonyl anions, with a view toward developing catalysts effective in the reduction of CO_2 . Indeed, the importance of the basicity of the metal complex in the formation of CO_2 complexes has been alluded to by several authors.^{6,7}

Preliminary experiments have demonstrated that the reactivity of CO_2 with a series of metal carbonyl anions parallels the relative nucleophilicities of these species. For example, $Na[C_5H_5Fe(CO)_2]$, I, reacts very rapidly in THF with CO_2 , while $Na[CO(CO)_4]$, II, is unreactive under similar conditions for extended periods. It has been reported that I has a nucleophilicity of 70,000,000 on a scale in which II was arbitrarily assigned a value of 1.⁸

The addition of CO_2 to a THF solution of I ($v_{CO} = 1870$, 1800, 1770 cm⁻¹) resulted in the rapid uptake of the gas and the immediate conversion (i.e. oxidation) of the anion to the neutral parent dimer, $[C_5H_5Fe(CO)_2]_2$, III ($v_{CO} = 1990$, 1950, 1780 cm⁻¹) accompanied by the formation and liberation of Na₂CO₃. Moreover, the addition of CO₂ to a solution of I stirred with excess sodium amalgam also led to the complete conversion to III. Only when the CO₂ supply was exhausted or removed by purging with N₂ did evidence for the anion reappear in the IR. The amounts of III and Na₂CO₃ recovered from the reaction mixtures suggests that the following scheme (Eqn. 1) must be occurring.

2 Na $[C_{5}H_{5}Fe(CO)_{2}] + 2CO_{2} \xrightarrow{\text{THF}} [C_{5}H_{5}Fe(CO)_{2}]_{2} + Na_{2}CO_{3} + CO$ (1) The slow addition of CO_{2} to a solution of I has led to the growth of CO stretching bands at 2000 and 1945 cm⁻¹ along with a broad absorption centered around 1400 cm⁻¹ which we suspect may be due to a CO₂ adduct (i.e. $[C_{5}H_{5}Fe(CO)_{2}CO_{2}]^{-1}$). Attempts to isolate this species in the presence of a large cation (i.e. $N(C_{2}H_{5})_{4}^{+}$ or $N(PPh_{3})_{2}^{+}$) were unsuccessful as were attempts to trap it as a methyl ester by reaction at low temperatures (ca. -68°C) with CH₃I followed by gradual warming to room temperature. In the latter case, IR spectra revealed that $C_5H_5Fe(CO)_2CH_3$ had formed along with lesser amounts of III. Indeed, I has previously been found to react with CS_2 to give the adduct, $\left[C_5H_5Fe(CO)_2CS_2\right]^{-1}$ 9,10 which, although not isolated, was reported to react with CH_3I to give the thermally unstable ester, $C_5H_5Fe(CO)_2CS_2CH_3$ ($v_{co} = 2031$, 1982 cm⁻¹).¹⁰

It is very tempting to envision the interaction of the adduct with a second molecule of co_2 to give $c_5H_5Fe(c0)_2C_2O_4^{-1}$, which by disproportionation might lead to CO_3^{-2} and $C_5H_5Fe(CO)_3^{+1}$. Reaction of the latter with I could then give III and CO. Indeed, Chatt and coworkers¹¹ have reported that the CO₂ complex, Mo(CO2) (PMe2Ph) , spontaneously converts into the carbonato bridged species, (PMe2Ph)3 (CO) Mo (CO3) Mo (CO) (PMe2Ph)3 in solution while Herskovitz¹² has, in fact, suggested that it is the stepwise reaction of CO_2 with $IrCl(C_8H_{14})(PMe_3)_3$ that leads to a complex containing a chelating ligani (i.e., C₂O₄) derived from two CO₂ molecules. Indeed, we have observed that the reaction of I with labeled ¹³CO₂ rapidly (<one minute) gives rise to the dimer, III, greatly enriched with ¹³CO as evidenced by the increased complexity of the CO stretching spectrum (III, unenriched, 1990 (s), 1950 (s), 1780 (s), cm⁻¹; III enriched, 1990 (s), 1950 (s), 1920 (m-s), 1780 (m-s), 1750 (m-s) cm⁻¹) as shown in Figure 1. The new bands due to the enriched dimer agree well with those originally weakly observed by Noack¹³ for the dimer containing naturally occuring ¹³CO(i.e. 1924 and 1762 cm⁻¹, This evidence strongly suggests that the CO2 undergoes heptane). coordination followed by reaction at the metal center with the concomitant incorporation of ¹³CO into the coordination sphere.

The reaction of $Na[C_5H_5NiCO]$, IV, (nucleophilicity=7,500,000) with CO_2 also proceeds rapidly giving carbonate in addition to an unidentified metal carbonyl product other than the neutral

C3/5

dimer $[C_5H_5NiCO]_2$, V. In addition, $Na[C_5H_5W(CO)_3]$, VI, (nucleophilicity=500)⁸ has been found to react slowly with CO_2 to give unidentified products while $Na[Mn(CO)_5]$, VII, (nucleophilicity=77)⁸ reacts over a period of 24 hours, to give HCO_3^{-1} and an unidentified manganese carbonyl species.

Work is being continued in this area to further characterize and isolate any products and elucidate the mechanisms involved in these reductions.

Acknowledgments

The authors would like to thank the donors of the Petroleum Research Fund administered by the American Chemical Society, the Research Corporation, and the SUNY Research Foundation for partial support of this work. We also wish to thank the referees for suggesting esterification and enrichment experiments which were underway at the time.

C37

References

C38.

- M.E. Volpin and I.S. Kolomnikov, <u>Pure Appl. Chem.</u>, 33(173)567.
 M.E. Volpin and I.S. Kolomnikov, Organometallic Reactions, Vol. 5, E.I. Becker and M. Tsutsui, Ed., Wiley, New York, N.Y. 1975, pp. 313-386.
- 3. T. Ito and A. Yamamoto, J. Soc. Crg. Syn. Chem., Tokyo, 34, (1976)34.
- Y. Inoue, Y. Sasaki, and H. Hashimoto, J. Chem., Soc., Chem. Comm. (1975)718.
- 5. I.S. Kolomnikov, T.S. Lobeeva, and M.E. Volpin., <u>Izv. Akad</u>. Nauk SSSR, Ser. Khim., (Russ) (1972) 2329.
- M. Aresta, C.F. Nobile, V.G. Albano, E. Forni, and M. Manassero, J. Chem. Soc., Chem. Comm., (1975)636.
- 7. T. Herskovitz, J. Amer. Chem. Soc., 99(1977)2391.
- R.E. Dessy, R.L. Pohl, and R.B. King, J. Amer. Chem. Soc., 88 (1966) 5121.
- L. Busetto, U. Belluco, and R.J. Angelici, J. Organometal. Chem., 18(1969)213.
- 10. J.E. Ellis, R.W. Fennell, and E.A. Flom, <u>Inorg. Chem.</u>, 15(1976) 2031.
 - J. Chatt, M. Kubota, G.J. Leigh, F.C. March, R. Mason, and
 J. Yarrow, J. Chem. Soc., Chem. Comm., (1974)1033.
 - T. Herskovitz and L.J. Guggenberger, J. Amer. Chem. Soc., 98(1976)1615.
 - 13. K. Noack, J. Inorg. Nuclear Chem., 25(1963)1383.